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High Temperature Creep and Slow Crack Growth 
Properties of HPSN as an Example of Ceramics 

Containing a Glassy Phase 

D. Bethge* 

Kernforschungszentrum Karlsruhe, Postfach 3640, 7500 Karlsruhe, 
FRG 

S U M M A  R Y 

The high temperature creep kinetics and the slow propagation of  cracks in 
hot-pressed silicon nitride with a glassy phase were investigated. In addition, 
creep tests under constant load (4-point-bending), compliance measurements 
and stress relaxation experiments were carried out. Specimens with 
trapezoidal cross sections were used to determine the ratio of  the creep rates in 
tension and compression. A two phase model, based on the compliance 
measurements, describes well the kinetics of  primary creep. 

A consideration of  the strength criterion for slow crack growth can be 
neglected for materials undergoing viscous flow or creep. A crack propagates, 
whenever the free energy of  the sample is thereby lowered. Assuming that the 
voids nucleated in the near crack stress field and in the whole (creeping) 
specimen contribute to crack propagation, theory and experiments are in 
agreement. 
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Load 
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Elastic energy 
Porosity (p: porosity nucleated in the near crack tip stress field, 
e: creep porosity) 
Work done by the external forces 
Energy term for crack propagation 
Crack length 
Crack velocity 
Specimen width 
Exponent 
Displacement (m: middle deflection) 
Specimen height (t: tension zone, c: compression zone) 
Number of grain contacts per unit volume 
Exponent 
Radius 
Time 
Fictitious time 
Rupture time 
Coordinate 

Material and geometry factors 
Constant factor (with index) 
Surface energy 
Strain 
e of the outer bend fibre, calculated like in the elastic case 
Creep rate 
Poisson's ratio 
Damage zone 
Stress 
a of the outer bend fibre, calculated like in the elastic case 
Outer tensile stress in the bend specimen for t ~ 
Effective stress 
Stress for t = 0 
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1 I N T R O D U C T I O N  

A study was made of the kinetics of creep and slow crack growth at high 
temperatures in ceramic materials containing a glassy boundary phase, i.e. 
HPSN. Engine designers intend to use ceramics for components exposed to 
temperatures above the softening level of metals. The plastic or creep 
deformation that occurs at these temperatures is more pronounced under 
tension than under compression, as has been reported earlier; ~ but what 
about the temperature dependence of this effect? Furthermore, the elastic 
properties of the specimen as a function of creep deformation and 
temperature were measured and are discussed. It will be shown that primary 
creep can be described by a mechanical two-phase model. It follows from 
this statement that the mechanism governing creep should change when 
stationary conditions are reached. The analysis of stress relaxation at 
constant strain is performed to complete the creep investigations. 

How far do creep parameters control the slow crack growth in a creep 
solid? An answer to this question might be found by considering the energy- 
criterion for crack propagation and by suggesting that creep porosity 
contributes to crack propagation. This will be discussed in Section 5. 

2 MATERIALS AND TEST FEATURES 

The materials tested are hot pressed silicon nitride (HPSN) containing either 
MgO orY20 3 as additives*: HPNS(Mg) and HPSN(Y).t After hot pressing, 
the additives form a residual, glassy boundary phase. The softening 
temperature of this intergranular glass is much lower than the decompo- 
sition temperature of the covalent-bonded Si3N 4 (between 1100-1400°C, 
depending on glass composition compared with 1900°C at 1 bar). 

For experiments (usually performed in air atmosphere) four point bend- 
tests were used. Outer and inner span widths of the loading apparatus were 
40 and 20 mm respectively. The size of the specimens was 3.5 × 4.5 × 45 mm. 
A preliminary study on creep and creep failure of HPSN(Mg) with 
experimental details was published by G. Grathwohl. 2 

The stress distribution in the bending beam changes during the creep test 
because of the non-linearity between creep velocity and stress, and the 
different creep rates depending on whether tensile or compressive stresses 
are applied. Simultaneously the neutral axis shifts into the compression zone 

* Commercial specifications: NH 206 and NH 209, Annawerk GmbH R6dental, FRG. 
t HPSN(Y 1) has a slightly different chemical composition than HPSN(Y), (see Table 11. 
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T A B L E  1 
Chemical Composition of the Investigated Materials 

in Weight % (nd = not determined) 

HPSN(Mg) HPSN(Y) HPSN(y1) 

Mg 2'0 0-01 0"02 
Y nd 7"8 4'6 
AI 0.4 0"2 0'1 
Fe 1.4 1.3 1.8 

of the bend specimen. The outer tensile stress, controlling the stress intensity 
of surface cracks, decreases from tr* (=6M b -1 h -2) to ooo (Fig. 1). To 
describe this in dependence of time, we imagine the bend specimen com- 
posed of several fibres laying on top of each other. Each of these fibres may 
deform as a Maxwell spring--dashpot model. Considering the hypothesis of 
Bernoulli, the creep rate ~ of a fibre in distance y from the specimen middle is: 

• # . ,  = ~  At,¢7 > 0 
~(t,y)=E+Ala [ =Dy+~(y=O), A (_Ac ,  t r< 0 (1) 

where E is the Young's modulus and n the stress exponent of creep. 
Usually for tension the dashpot or creep parameter A is greater than for 

compression: A t > A¢ × D is related to the middle deflection rate fro of the 
specimen: 

dyd~-2~*h h2( 4 h . )  D - - 0.272 ~-D2fm (2) 

where lp = inner span width of loading fixture. 
D and g(y =0)  depend on the actual stress distribution ~(t,y) in the 

f 

L ,  ..... T ht 

he 

t 
Fig. 1. Stress redistribution in the bending specimen. 
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specimen. In a first approximation,  they can be regarded as constant  and one 
obtains: 

n = l  a(h/2)~ - (  -~)exp(-AtEt)+~.  ¥ 1  a~ a~ (3a) 

n ¢ l  ~ - (n-1)a*"-lAtEt+ 1 a*J +a* 

o - ~  - 6 ~  1 + (4) 

A more detailed analysis is given in reference 3. 
The ratio a~/a* can be proved by testing two bend specimen of  different 

height with the same deflection rate (fml =Jm2 ~ dg/dy, see Fig. 2). The 

¢, MC. 
Fig. 2. 

E 

h 
/ , ,  

f - _ 1 )  M 
! 

Two specimens of different height (.rml =i 'm2 ~ dg/dq). 

bending moments  are measured when stationary condit ions are reached. In 
the small specimen the bending momen t  is smaller by AM. We find: 

O'~ 
O'* 

1/(n + 1)} 

?) (5) 

For  HPSN(Mg), 1200°C, f m =  2"1 X 1 0 - 2 m m h  -1, for instance, we get 
f rom eqn 5: ~ /o -*  = 0.532. This value corresponds well with the theoretical 
one of  eqn 4: 0.514. In Section 3 it will be shown how n and At/A c are 
determined. 
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3 EXPERIMENTAL RESULTS 

3.1 Primary and secondary results 

The decrease of the creep rate during the primary creep range can be 
described mathematically by (Fig. 3): 

g* = A * a * " ' t  ~ ( 6 )  

where g* is calculated as for the elastic case, eqn 2. 
At high temperature the value of c is -0"5, it decreases to c = - 1  with 

decreasing temperature (Figs 4 and 5). This temperature dependence of c is 
also demonstrated for other two phase ceramics. 4 

As can be seen from Figs 3 and 4, secondary or stationary creep rates are 
measured at 1200°C for HPSN(Mg) and at 1300°C or higher for HPSN(Y). 
Stationary creep usually is described through the Norton Law: 

g *  = A ' a * "  ( 7 )  

The stress exponent n is evaluated from the creep rates which are determined 
at different loads• 

g' [~) 
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Fig. 3. Creep rate vs time for HPSN(Mg) and HPSN(Y) at different stresses a*. 
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Creep rate vs time for HPSN(Y) at different temperatures. 

The relation between A* and the uniaxial parameters At and A c is: 

/2n  + 1"~" 2 A * =  CA 1/(n+ l) A l/{n+ljtn+l 
\ On J~  ' + ~ ' (8) 

which means that, if A t is much greater than A c, the bend deformation is 
controlled by tension creep. 

An Arrhenius plot of A* yields activation energies which correspond to 
those of pure SiOa-glass in the case of HPSN(Mg) (560-700 kJ mol-  1) and 
with those of silica-glasses for HPSN(Y) (215 kJ tool- 1).s We would expect 
viscous grain boundary sliding to control the creep rate. 

The ratio A, /A  c can be determined by bend specimens with trapezoidal 
cross sections. 6'v At /A  ~ has to be calculated from the different deformation 
velocities of two trapezoidal specimens with M 2 = - M , .  The results are 
listed in Table 2. HPSN(Mg) contains less grain boundary phase than 
HPSN(Y) and the softening temperature is lower. With increasing 
temperature (i.e. increasing softening of the grain boundary phase) n rises 
from 1 to 2, and simultaneously A, becomes greater than A c. It can be 
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"'l E I~I HPSN(Y 1) 
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Fig. 5. Creep rate vs time for HPSN(Y 1) at different temperatures. 

concluded that the ratio At~he, calculated for steady state conditions, is also 
valid for primary creep deformation. The ratio of the deflection rateSfml / fm 2 
from which A t / A  ¢ is calculated, or else the difference of their logarithmic 
values is time-independent (Fig. 6): 

~(t) = A l e " i t  ~ (9) 

A h / A l e  ~ At/Ae, n I ~ n  

This fact is to be taken into consideration when discussing the creep 
mechanisms (Section 4). 

TABLE 2 
Creep Data. of  the Studied Materials 

Y203 or MgO T n A* AJAc 
(wt. %) (°C) (m2"/MNnh) 

HPSN(Y) 9"9 1 200 0.9 a 3 ~ 
1 300 1'2 1"9 x 10 - s  6 
1 400 1"5 7"7 x 10- a 50 

HPSN(Mg) 3'3 1 200 1"9 1'1 x l0 -a 100 

Q = calculated from primary creep data• 
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3.2 Elastic behaviour of  a creep specimen 

The elastic behaviour of a creep specimen during the creep test can be 
measured by partial unloading. In distinct time intervals, the load P is 
relaxed by 20% for a few seconds and is then reimposed. The ratio obtained 
AP/Afm, is a measure for the specimen stiffness. 

The HPSN(Y)-material exhibits a more or less distinct increase of 
AP/Afm with ~* (Fig. 7), whereas HPSN(Mg) undergoes a decreasing AP/Afm 
up to e* = 0"4% (Fig. 8). 

Crystallization of the amorphous grain boundary phase and/or increasing 
grain linkage may stiffen the specimen, whereas creep porosity and crack 
growth may soften the specimen. As will be shown in Section 5 creep failure 
in HPSN(Mg), 1200°C, cannot actually be described without considering 
creep porosity. For HPSN(Y l) the following equation relating g* to the 
increase of stiffness can be established (Fig. 9): 

{ ( A P ' ~  -k (10) 
A \AfmJJ 

where k is an exponent and 

Afm ~ m t = O  

Eqn 10 will be discussed in Section 4. 
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calculated, see Section 4.1. 

3.3 Stress relaxation testing 

To characterize a material, stress relaxation must also be considered. 
Usually the strain is held constant and the decreasing of  stress is measured: 

v { A t, a > O  (11) g=-E+AIaI"-O A =  - A ¢ , a < O  

In a bend test only the middle deflection fm can be held constant. The 
decreasing of  the bending moment  is measured. For  A t > A c the time factor 
of  the relaxation for tension is smaller than for compression. Tensile stresses 
relax quicker than compression stresses. Since the normal strength remains 
zero, the neutral axis will shift into the compression zone of  the specimen. 
For  A t >> A c this zone will disappear during the preceding creep test, so this 
case and the c a s e  A t = A c are easy to calculate. We integrate eqn (11) over the 
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specimen height h and get: 

n = l :  

n : ~ l :  

M 
= e x p ( - A t E t  ) valid for A t = A¢ and A t >> A¢ (12a) 

Mo 
M 2 n +  1 t 

- u ~"+l)/" - - F u ~ " - t ) / " +  1 du (12b) 
M o n \ t o .  

where F =  1, u = rl/2h for A = A t = A c, F =  21 -", u = rl/h for A = A t >> Ac and 
t / to.  = (n - 1 )AE(a*(2n  + 1)/3n)"- it. 

In eqn 11 only stationary creep is considered. Time hardening can be 
described when introducing a fictitious time t*, which is related to the real 
time t as follows: 8 

t I +c 
I * - -  

l + c  

because dt* = t c dt, eqns (12a) and (12b) are also the solutions for a material 
undergoing time hardening creep 

g = A a , t  c 

if t in eqns (12a) and (12b) is replaced by t*. 
If strain hardening occurs 

= Bfn/(c+ 1)ec/(c+ 1) 

with e = ( a -  ao)/E,  a /ao  must be determined before integrating over the 
bend specimen height h to get M / M  o. 

Figures 10 and 11 show the typical relaxation behaviour of  HPSN: less 
relaxation occurs at lower temperatures. It does not depend on the height of  
the preliminary applied load, and it is postponed with extending duration of  
the preliminary creep test. 

In the following, calculation and experiment are compared. The 
relaxation behaviour cannot  be modelled by a creep n of  2 or 1.5, even if time 
hardening is taken into consideration. Assuming strain hardening would 
lead to a dependence of  a / a  o on a o and therefore of  M / M  o on M o which in 
fact is not  observed (Fig. 11). The statement 

g = ~ + A  - -  a " = 0  (13) 
/ 5  \ a o /  

leads to (with n = 1, because M / M  o is not a function of  Mo): 

o" 
- -  = (1 + rnrAEt  ) -  1/,.r (14) 
(7 o 
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Fig. 12. Relaxation of  the bending moment  for constant middle deflectiofifm, dashed lines 
are calculated from eqn (14a): (a), m r = 4; (b), m r = 5 (only the shape of  the curves are 

compared, the relation of  (a) and (b) to t is not considered). 

For  the cases A = A c and A >> Ac the bending moment  Mdecreases  in the 
same way as the stresses in the different fibres: 

M 
- (1 + mrAEt)- 1/,,, (14a) 

M0 

Best agreement is found with m r = 4, HPSN(Mg) and m r = 5, HPSN(Y) 
(Fig. 12). 

Stress relaxation due to diffusion may be responsible for a faster decrease 
of  M/Mo for longer time periods than expected by eqn (14a). 

In dynamic bend tests (6" > 0 )  Fett  et aL 9 determined a n-value of  7 for 
HPSN(Mg),  1200°C. How can these stress dependences (n = 2, 7; m r = 4) be 
explained? An answer may be given in Section 4. 

3.4. Time to rupture 

The measured lifetimes of  creep specimens are introduced and discussed in 
Section 5. 
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4 DISCUSSION: CREEP D E F O R M A T I O N  

4.1 A structure model  for creep 

In Section 3.2 the creep rate was found to be 

= A A P  -k 
(10) 

where A(AP/Afm ) is the increase of the specimen stiffness during creep test. 
For better understanding let us consider a mechanical two phase structure 

model, built up of elastically deformable grains which are surrounded by a 
viscous glassy phase. Si3N 4 is covalently bonded and no yielding is expected 
even for temperatures at which the grain boundary phase softens. With 
increasing deformation of the whole structure the number, i, of grain 
contacts per unit volume (or else the grain linkage) will also increase. Let us 
assume the following relationship between increasing stiffness and 
increasing density of grain contact points: 

The stress in the structure will be increasingly taken over by the contact 
points, and the viscous phase unloaded. Only a viscous phase in motion 
transmits a shearing stress. The creep rate g is proportional to an average 
sliding rate ~: 

g~ T 
(16) /3' 

Where r/is the viscosity and the average shear stress ~ is assumed 

(1)k 
z = flz ~ (17) 

At high temperature and high viscosity k =  1. With decreasing 
temperature the boundary phase becomes more tenacious, loses its flow 
capacity and acts as additional contact points: k > 1. From this we find 
eqn (10): 

.~__/~,~=t~,~_t~ :(Ai)_~_~thth AP -~ A (lOa) 
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For  
deformation e (e.g. observed for HPSN(y1), 1300°C, (Fig. 7)) 

the simple case that the stiffness increases linearly with the 

Introducing eqn (10a) 

=~3~; /~o= r/ 

rearranging and after integration 

or else 

e = {(k  + 1)f lof l j  k} X/(k÷ 1)tl/tk÷ 1) 

1 
~, t-k/(k+ 1) ___ t c, - -  -- 1 = C (19) 

k + l  

Thereby the relationship to the primary creep kinetics is established. At 
high temperatures k - -1  and c - - - 0 . 5 .  With diminishing temperature k 
increases (k > 1) while c approaches - 1. The k-values in brackets in Fig. 9 
are calculated from eqn 19 (c-values are taken from Fig. 5) and are in 
agreement with the experimental determined k. 

The decreasing of the creep velocity during the primary range can thus be 
described by a mechanical two phase model. Other models to be found in the 
literature, 4'1° following the Kingery sintering model, consider solution/ 
reprecipitation of grain substance as rate controlling. These models predict 
an exponential stress dependency of the creep rate, which in fact is not 
observed. 

It is doubtful whether creep mechanisms can be deduced from simple 
structure models like that of Lange. 11 The stiffness of his cubic-grains- 
structure will decrease with increasing deformation. This is not observed, 
not even in HPSN(Mg). 

Grain contact points can be removed by diffusion or, depending on the 
movement of the grains relative to each other, the contact area may increase. 
If an equilibrium between added and removed contact points is reached, 
stationary creep rates will result. That means, by transition from primary to 
secondary creep, a change in the creep rate controlling factor occurs (first 
grain boundary sliding restrained by rising number of grain contact 
points--then removal of these contact points by diffusion). 

The asymmetric creep behaviour is therefore probably independent of the 
creep mechanism, since it is observed in the same manner during primary 
and secondary creep. 
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4.2 Void nucleation and growth--reason for asymmetrical creep 

When the stress exceeds a limit voids or microcracks nucleate in the grain 
boundary phase between the grains at propitious sites. The limit depends on 
the degree of  the local inhomogeneity. We assume that the number of 
microcracks per unit volume, 57, may be described by a power law: 

57 = ~D C;m (20) 

i.e. o -m- 1 describes the defect size distribution in the unloaded structure. 
Voids and microcracks grow in accommodat ion to the creep deformation 
(they do not influence the creep kinetics but are indispensable for the 
complex mechanism of  creep). This can be shown by cooling a specimen 
after a creep test without removing the load, and by reapplying the same 
bending moment,  but of  opposite sign, in a second test. The creep kinetics are 
the same, with the exception of  the values of the creep rates; in the second test 
they are somewhat higher (Fig. 13). The voids and microcracks now present 
in the compression zone close and therefore contribute to the deformation 
by grain boundary sliding. 

In creep test with constant loading, voids and microcracks nucleate at the 
start of  the test during application of  the load. Subsequently, voids or cracks 
may occur if adjacent plastic deformation is hindered, e.g. by a very large 

Fig. 13. 

1 
"T HPSN (Y) 1300°C 10-2 
/ 

I0 "3 "I 'i..... . 
5 t " i  i. " • / 2) o'=-200Mm-~.N 

t 
21 I) ..... .,,_ IO'}" L 

10-6 , : ; .- 
0.01 0.1 1 10 t Ihl 100 

Creep kinetics of HPSN(Y): (l) = conventional test, (2) = second test with the same 
specimen, but with opposite sign of the bending moment. 
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grain. The nucleation of  voids accelerates the creep rate. F r o m  this s tatement 
the following hypothesis can be proposed (for uni-axial tensile stress): 

g = 1 + flu--~- A(t)a" (21) 

whereas (eqn 20) 

dt = J~D~Tm- 1~ (22) 

Hypothetically (to observe this effect) we need an increasing stress rate. 

For  sufficiently high 6 (so that  1 << fin d3~/dt) it follows f rom eqn 21 (with 
a = ~t): 

g --~ d" + " (23) 

For  HPSN(Mg), 1200°C, n + m = 7. 9 
During stress relaxation (see Section 3.3) viscous or Newtonian grain 

boundary  sliding is responsible for the stress decrease: therefore n = 1 in 
eqn 13. When the stress decreases, the smaller voids or cracks will close if the 
arrangement  of  the surrounding grains is favourable. Only a certain 

35/,7A 

Fig. 14. 

I 0,2Hm I 38g0A ~ 0,2~m 
TEM-micrographs of creep porosity in: (a), HPSN(Mg); and (b), HPSN(Y), 

~*= 1%. 
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percentage of the voids of a size group will disappear. Surface energy will be 
recuperated and the specimen reverts to a more stable state. 

On the other hand, voids which close slacken the stress relaxation because 
the volume of the voids must be compensated either by elastic strain or by 
plastic deformation. The 'tighter' the void size distribution is (high value of 
m - 1 )  the slower the stress can relax. It can be expected that the size 
distribution of voids in the deformed structure and of defects in the 
preliminary structure respectively is similar. The more a decreases below Oo, 
the more voids will close; voids which should, due to their size, already have 
disappeared but were hindered by the surrounding grains. This will slow 
down the stress decrease. This might be the reason why stress relaxation can 
be described well by eqn 14 with m -  1 = m r = 4 for HPSN(Mg). 

The creep must be asymmetrical because of the different tendency of 
nucleating voids or microcracks, depending on whether the structure is 
submitted to tensile or to compressive stresses. Voids and microcracks easily 
nucleate under tension, which favour grain boundary sliding, and yield a 
contribution to the creep deformation. Figure 14 shows creep porosity, 
originating in the outer tensile zone of the bend specimen. At similar 
deformation (e* = 1%) much less porosity is observed in HPSN(Y) than in 
HPSN(Mg). In both cases crystallisation of the amorphous phase could not 
be detected. 

5 SLOW CRACK GROWTH 

5.1 Theory 

The following statement can be made on the slow crack growth in an HPSN 
structure, submitted to creep deformation. With our apparatus it is not 
possible to observe or to measure directly the growth of a crack. We 
determine, for example, the time to failure which allows an indirect study of 
the crack growth kinetics. The specimen were precracked by Knoop 
indentation or by notch, opening modus is L 

Griffith la considers the energy conversion in a linear-elastic solid 
exhibiting crack lengthening by da: 

d W -  dU = 2°/bda (24) 

where Wis the work done by the external force, U is the elastic energy stored 
and 2vbda the provided surface energy. The Griffith criterion indicates 
whether crack lengthening is thermodynamically possible. Additionally the 
stresses at the crack tip must exceed the cohesive strength (for more details 
see Ref. 13). If they do not, the bonding may be overcome by thermal 
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fluctuation, or a chemical attack may weaken the bonding strength. The so- 
called stress criterion loses its significance in materials undergoing creep or 
viscous flow. The decohesion therefore cannot be stopped. Crack growth 
will occur wherever the free energy of the specimen is lowered. 

Consider a specimen with only one crack. If the crack does not grow, the 
work done by the external forces will be consumed as creep work. The 
greater part will be converted to heat, but some will be stored as surface 
energy in form of voids or microcracks or as elastic energy by increasing 
grain linkage. 

If crack growth is considered to be a discreet event, it is governed by the 
following extended energy balance: 

d W -  d U (>=) d W* + 27bda + dq (25) 

where q is the energy dissipation by plastic deformation at the crack tip 
which was first taken into account by Orowan and Irwin; W* is the released 
energy, preliminarily trapped by creep. W* supports a crack extension. W* 
may be stored as surface energy of  the voids or microcracks through which 
the crack grows. The extended energy balance in eqn (25) leads to: 

dq d W* ( > ) 0 (26) 
G -  2)'--b-~a4 bda - 

For linear-elastic material behaviour the energy release rate G is related to 
the stress intensity factor; for crack opening modus I: 

G - K2 E ' -  E (27) 
E "  1 - v 2 

If no surplus of preliminary stored creep deformation energy is needed to 
fulfill the energy balance, crack growth is unstable, d W* = 0: 

2), + odad" q a = ao = K~cE' (28) 

(Ktc is the critical stress intensity factor). If crack growth is energetically 
favourable, it can be described by 

dW* (_>) 1 
bda E' (K2c - K2) (29) 

A similar statement is considered by Dutton for crack growth by 
diffusion. 14 A crack expands if the free energy F of the specimen is thereby 
lowered: dF/da <_ O. 

In the following W* is assumed to be internal surface energy accumulated 
by creep. 

d W* = 2? dO (30) 
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Where O is the surface of  voids and microcracks through which the crack 
grows. 

As previously mentioned (Section 4.2), the void or microcrack density can 
be expressed in terms of  a power law: 

~ m (20a) .N a e 

G is the effective stress. Void or microcrack growth occurs in accommo- 
dation to the creep deformation: 

~ge =Aa"e, n =  1 . . .2  (31) 

According to von Mises, G can be calculated by the stress deviator sij: 

0" e = S 2 (32) 

For  linear-elastic material behaviour in the vicinity of  a crack tip G = G,0: 

- K--l~ cos ~ / ( 1 - -  2v) 2 + 3sin z~° (33) 
O'e'O x/2nr  z X/ 2 

where r, ~0 are polarcoordinates. For a bending beam the stress intensity 
factor is: 

where Y is a geometrical function,15 a the crack length, and a(h/2) the outer 
tensile stress of  the bend specimen. During creep its value decreases to 50% 
of  the initial height (Section 2). The stresses at the crack tip also decrease with 
time. This might be described by a function fit): 

rre(t) = G ofit), e.g. n = 1" f i t)  = exp( -AtEt  ) (35) 

I fa  stress field is displaced with a constant velocity, for example in front of  
a crack, it is smallest at the lowest velocity. At a distance x 1 in front of  the 
crack tip one obtains (~o = 0): 

a.(x,) = Jo~ --~--x F ~ 6  - dx (36) 

Kt(1 - 2v) [ ' -3A,Ex,~ 
- - - - - -  e x p l  (36a) 

\ 2(1 + v)6 ] 

Because of  the stress concentration at the crack tip, new voids and 
microcracks are nucleated and therefore the effective stress does not  exceed a 
limit ao.m, x (Fig. 15). Consequently a damage zone, p, exists in front of  a 
crack tip. The extension o fp  is a measure of  the stress intensity. In analogy to 
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Fig. 15. 

3O0 
AE=2.10_~l/rni n 

i ~  v=0 

200" ~ii\ ~ 

100" o 

 =10-Tm/mio 

P 

0 ft2 50 100 x Ipml 

Effective stress in front of a slowly growing crack: (a), linear-elastic case; (b), eqn (36) 
and; (c) eqn (36a). 

the extension o f  the plastic zone in metals:  ~re.ma x = 6 e ( x  1 = p/2). IfF(t)  can be 
represented by  an exponent ia l  function,  a first app rox ima t ion  to determine p 
leads to a t ranscendenta l  equat ion:  

AtEP 1(i2 
In p + - -  - In - -  (37) 

~O'e,ma x 

where  p is measured  in the crack plane. The new poros i ty  Vp, originat ing in 
the damage  zone, can be calculated: 

Vp = ff l Nge dt (38) 

Where  t 1 is the t ime the crack o f  velocity fi needs to travel a dis tance p: 

P (39) t 1 =--;- a 

ge, an effective creep rate 

/~e = A t  O'n (7a) 
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and N is the void or microcrack density 

IV = l~2pq (40) 

(the exponent  q will be determined later). Here N should be related to the 
strain at the crack tip which is propor t ional  to p. 

The value of  6 is obtained from energy balance (eqn 29) as shown in the 
following. Voids and microcracks, already present in the structure, will 
extend under  creep conditions: 

where V o is the porosity after loading, t the time measured from the 
beginning of  the creep test and i the creep rate. 

Assuming, the shape of  the cavities to be crack like with an average width 
d, then the internal surface is propor t ional  to the hollow volume. The pre- 
existing surface, when the crack propagates  by bda, is (with eqn 30): 

ld(Vo V~)_dOc l d W *  
bda - 7 bda ' Oc = 20 (42) 

Vp and V~ are the hollow volumes per unit area. Int roducing eqns (38), (41) 
(considering eqns (39), (40) and (7a) and (29) in eqn (42) the crack growth 
rate, ~, can be deduced (KtZc/E ' -  VoV/d is the theoretical value of the 
porefree material and is replaced in the following by K~c/E'  which is 
measurable): 

O~apq+ 1 -t- ~bp~ 
(t = K Zc K2 (43) 

E' E'  ~ce 

= P 1 P 2 A f l e , m a x T / d ,  ct b - VoAtae,maxT/d,  ot c = 7Vo id ) .  p is to  be t a k e n  f r o m  
eqn 37. In a bend specimen the strain g of  the fibre at the crack tip is 
propor t ional  to the distance of  that  fibre to the neutral axis. For  
approximat ion  g in eqn (41) is the secondary creep velocity: g = D(h, - a). It 
follows: 

(t - a~Pq+ ~ + ~2a*"t(h' - a)p (43a) 

KtZc K2I ct3a*"t(h , -- a) 
E '  E '  

(~l = C~a, ~2 = ebA*2/h,  ~a = ecA*2/h).  ~1, c~2 and c¢ 3 contain geometrical 
factors and material  factors. I f  no creep damage in the specimen occurs: 
coL= 0¢ 3 = 0. For  6 >> A t E  p it is p--, K 2 (eqn 37) and q can be estimated 
(N ,-, pq ~-, K] q -,, a~ q = am): 

rn 
q ~ ~- (44) 
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with m - 1 characterizing the void or microcrack size distribution m - 1 is 
supposed to describe the stress decrease in the relaxation test (Sections 3.3 
and 4.2). 

5.2 Crack growth in HPSN(Mg) 

With eqns (43) and (37), theory and experiment can be compared. Most of  
the values needed to determine the ~'s (see Table 3) can be taken from creep 
data or are geometrical factors. The starting crack length ao of  natural flaws 
is taken from literature,16 a0 of  Knoop-indentat ion pre-crack was measured 
on the broken surface. For  HPSN(Mg), 1200°C m = m r + 1 = 5 (Fig. 12) and 
therefore q = 2.5. By proceeding numerically step by step, increasing a by 

TABLE 3 
Numerical Data for HPSN(Mg), 1200°C to Calcu- 

late d from eqns (37) and (43) 

Kzc 15 MN/m 3/2 
o . . . . .  200 MN/m 2 
q 2"5 
• IE' 3 x 109 MN2/m 5.s min 
~2 E' 4 x 10 -8 l/min 2 
ct3E' 1 X 10 -3 1/min 
AtE' 2 × 10 -4 m2/MNmin 

220' 

200' 

180 

160 

lt,0' 

120' 

100' 

"- \ 
, / ' -  , 

" 2, 

1o 16o 1o.0o 1o6oo t, I . , i . I  L 

Fig. 16. Stress rupture diagram for HPSN(Mg), dashed lines are calculated (numerical data, 
see Table 3). 
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d x At until KIc is reached, the rupture time at a given nominal stress tr* can 
be computed. Figure 16 shows the results and the experimental data. The big 
difference in rupture time t r for ao = 50 #m (natural flaws) between a* = 170 
and 180 MN m -  2 originates in the relaxation of the outer tensile stress of the 
bend specimen. The stress intensity also decreases. For short initial crack 
lengths the crack velocity is small; additionally the effective stress a e in front 
of the crack tip is lowered by creep, requiring time. The crack leading to 
failure will stop propagating until creep damage in the whole specimen will 
allow it to start again. Failure occurs within a short time. Rupture behaviour 
can also be described by the Monkman-Gran t  equation: 12 ~* ,-~ 1.7%. For 
bigger initial crack sizes a0 (e.g. 100 #m) this effect is not large. At low stresses 
the difference in rupture time between pre-cracked and undamaged 
specimens is small. Because of the scattering of the structure properties and 
the high number of natural flaws, a pre-cracked specimen does not in all 
cases break at the artificial pre-crack. 

Figure 17 shows the crack velocity in dependence on time for a precracked 
specimen. To check this result, a specimen was cooled without removing the 
load after 20 min and another after 12 hours of creep test. They were broken 
at room temperature. Figure 18 demonstrates that the crack extension zone 
is of similar size in both cases. Between these two points in time, 6 decreases 
by several orders of magnitude. The damage zone p is shown in Fig. 19. The 
notched specimen was cooled down under load, the oxide layer was removed 
and the photograph taken. 

a,= 100 pm 

lo- C 

1 

Fig. 17. 

d =120 MN/m 2 

6 

i 1(3 160 1000 t [rnin] 
Crack velocity vs time, calculated for HPSN(Mg), 1200°C. 
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Fig. 18. 

o'*=120 MN/-m 2 ,12000C, 12 h 

HPSN(Mg)-fracture surface, 5 Knoop indentations (49 N), after creep test in air 
fractured at room temperature (SEM). 

HPSN(Mg) was also tested in vacuum. At a pressure of only s o m e  10 - 6  

mbar the grain boundary phase volatilizes (Fig. 20). This leads to an 
enhanced crack growth rate. Beside the hollow volume a constant 
contribution in the energy eqn (29) must be taken into consideration: 

dt dOc d W* 1 
~'~-~a + ~ ~ = bda - E'  (K~c - 1<I2) (45) 

Analogous to the procedure shown before we get: 

dt - ~lPq+ 1 + ct2a,.t(ht _ a)p + ~4 (46) 
K~c K~ 

o~3tr*nt(ht - a) 
E '  E '  

With the exception of ~4, all factors are taken from calculation in air. A 
better agreement between calculation and experiment is possible by 
enlarging ao: natural flow from 50 to 70 pm, Knoop indentation precracks 
from 100 to 140pm (Fig. 21). This points to the fact that flaws exhibit a 
certain amount of healing in an oxidizing atmosphere. 
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(a) 

Fig. 19. 

(b) 

SEM-micrographs of the damage zone in a notched HPSN(Mg) specimen. 
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(a) 

Fig. 20. 

(b) 

SEM-micrographs of the polished surface of HPSN(Mg): (a), before; and (b), after 
treatment in vacuum (3 h, 1200°C, 3 x 10 -6 mbar). 

5.3 Crack growth in HPSN(Y) 

HPSN(Y) was tested under static and cyclic loading conditions. This HPSN- 
material with 9.9wt% Y 2 0 3  .additive does not  experience much creep 
damage at 1400°C. Stiffness does not decrease with the deformation, and 
only a few voids and microcracks can be observed by TEM (see section 4): 
Fo ~ 0 ,  i.e. ~2 =~3 =0 .  Rupture times in these experiments are not  
particularly long, so the decreasing of  a e in front of  the crack tip by creep 
may be neglected. Thus eqn (43) can be simplified: 

d ~ pq +1 ~ KIN (47) 

with N ~ 8 following the hypothesis of  Section 4.2; from eqn (44): N = m + 2, 
m = m r + 1 = 6 (Fig. 12). 
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Stress rupture diagram for HPSN(Mg), dashed lines are calculated. 

With N = 8, it is possible to predict time to failure under cyclic load from 
static data. It is assumed that crack growth mechanism remains the same 
(the same crack growth rule is valid). Furthermore,  it is supposed that the 
outer tensile stresses decrease with time under static and cyclic load in the 
same manner.  The stress lowering leads to a fictitious rupture time t*, which 
can be expected if the outer tensile stress would remain constant: 

f l  r O" , t 
t* = ~ ,  dt (48) 

Notch depth of  the specimens is 0.1 mm. The results are shown in Fig. 22 (for 
more details concerning theoretical treatment see Ref. 17). 

6 C O N C L U D I N G  R E M A R K S  

A Griffith energy balance, extended by W*, leads to an equation for the 
crack velocity. Voids and microcracks nucleated in the stress field at the 
crack tip and in the whole creeping specimen are considered to facilitate 
crack propagation.  Experiments are in agreement  with theoretical 
calculations. A relationship also exists between the crack growth exponent N 
and the stress relaxation under constant strain. 
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Fig. 22. 
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HPSN(Y): time to failure under static and cyclic loading, dashed lines are 

calculated from static data (R = amt./a,.ax ). 

A change of the rate controlling factor occurs, when passing from primary 
to secondary creep. Increasing grain linkage, or else increasing number of 
contact points between grains, decrease the creep rate. Stationary conditions 
are reached when the ratio of contact points, removed by diffusion, and 
added by creep deformation, is 1. The stress dependence of the nucleation of 
voids or microcracks and the growth of the hollow volume in accommo- 
dation to creep deformation, may lead to the different measured stress 
dependences, dependent on the kind of experiment considered (static, 
dynamic or strain controlled). 
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